Monatshefte für Chemie 109, 987-999 (1978)

Optisch aktive aromatische Spirane, 7. Mitt.¹:

Circulardichroismus optisch aktiver 5,5'-disubstituierter 2,2'-Spirobiindane

Elisabeth Langer, Harald Lehner, Horst Neudeck und Karl Schlögl*

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 25. Oktober 1977)

Optically Active, Aromatic Spiranes, V11: Circular Dichroism of Optically Active 5,5'-Disubstituted 2,2'-Spirobiindanes

Dipole—dipole coupling of the indane fragments in 5,5'-disubstituted 2,2'-spirobiindanes is predominantly responsible for the origin of optical activity in the ${}^{1}L_{a}$ -electronic transition only if both ligands exhibit strong interaction with the aromatic nuclei. This mechanism does not contribute essentially to the ${}^{1}L_{b}$ -Cotton effect.

The band-splittings of the couplet as well as the rotational strengths of the transitions of A and B symmetry-type in the ${}^{1}L_{a}$ -Cotton effect are in accordance with a rough calculatory estimation.

The absolute configuration thus determined agrees with the chirality. recently deduced by chemical methods.

The rotational strengths of the ¹W-Cotton effect of the carbonyl derivatives 4, 5, 12, 13, and 15 located at appr. 320 nm are remarkably low. This can be explained on the basis of conformational considerations.

Einleitung

Der Circulardichroismus (CD) des inhärent achiralen, chiral gestörten aromatischen Chromophors wurde in den letzten Jahren unter verschiedenen Gesichtspunkten untersucht (vgl. ²⁻⁴ und dort zitierte Literatur). Im Vordergrund des Interesses stand dabei das Bestreben, Beziehungen zwischen Molekülbau und CD herzustellen. Dies führte einerseits zur Ableitung rein empirischer Konfigurationsregeln aus einem mehr oder minder umfangreichen Datenmaterial, die sich teils auf den längstwelligen ¹L_b-Cottoneffekt, teils auf den ¹L_a-Ubergang bezogen. Andererseits wurde auch auf rein physikalisch-theoretischer Basis versucht, eine Korrelation zwischen dem Vorzeichen des Cottoneffekts eines Chiroids und dessen absoluter Konfiguration herzustellen. Die Grundlage für diesen Aspekt bilden

Betrachtungen über den Mechanismus der optischen Aktivität des ${}^{1}L_{b}$ und ${}^{1}L_{a}$ -Cottoneffekts. Besonders bei Molekülen, die zwei benachbarte aromatische Chromophore enthalten, und deren Symmetrie größer ist als C_{1} . wurden im allgemeinen zufriedenstellende Ergebnisse erhalten. Als geeignete Modellverbindungen haben sich dabei Moleküle mit starrem Gerüst erwiesen⁵⁻¹⁷.

Kürzlich wurde über die absolute Konfiguration und das optische Drehungsvermögen chiraler 5,5'-disubstituierter 2,2'-Spirobiindane berichtet^{1,18}. Im Hinblick auf ein tieferes Verständnis der optischen Aktivität lag es nahe, auch den *CD* dieser Chiroide zu ermitteln. Eine diesbezügliche Studie sollte auch einen Vergleich mit der aus einer chemischen Korrélation ermittelten absoluten Konfiguration^{1,18} zulassen. Da 2,2'-Spirobiindane aus zwei zueinander orthogonalen Indan-Einheiten bestehen, erschien uns eine Analyse ihres *CD* besonders aussichtsreich.

Ergebnisse und Diskussion

UV-Spektren

Wie das Monomere (Indan¹⁹) und das Isomere (1,1'-Spirobiindan^{7,10,12}), weist 2,2'-Spirobiindan (1) den ¹L_b-Übergang bei ungefähr 270 nm auf. Die dem ¹L_a-Übergang entsprechende UV-Bande findet sich bei etwa 220 nm. Bei den substituierten Spiranen 2—15 ergeben sich fallweise bathochrome Verschiebungen der Absorptionsbanden um 10 bis 20 nm. Die n $\rightarrow \pi^*$ -Bande des Enonchromophors der Carbonylverbindungen 4, 5, 12, 13 und 15 tritt bei etwa 320 nm auf. (Für die UV-Spektren vgl. die Abb. 1—4 sowie Tab. 1.)

Tabelle 1. UV-Spektren der 2,2'-Spirobiindane 2—15 in Ethanol. λ [nm] (log ε)

- 2 207 (4,79), 211 (4,66) s, 243 (4,36), 277,5 (3,52), 287 (3,44).
- **3** 207 (4,76), 211 (4,67) s, 243 (4,43), 278 (3,55), 287 (3,51).
- **4** 208 (4,66), 211 (4,65) s, 217 (4,59) s, 258 (4,49), 283 (3,72) s, 291 (3,64) s.
- **5** 206 (4,60), 212 (4.58) s, 262 (4,48), 287 (3,83) s, 295 (3,74) s.
- **6** 205 (4,29) s, 215 (4,08) s, 263 (3,27), 268 (3,43) s, 271 (3,45), 277 (3,54).
- **7** 215 (4,28) s, 264 (3,38), 269,5 (3,52), 273 (3,57), 278,5 (3,66).
- $8 \qquad 215 \ (4,31) \ s, \ 263, 5 \ (3,39), \ 269 \ (3,52), \ 272 \ (3,56), \ 278 \ (3,66).$
- **9** 205 (4,91), 209 (4,86) s, 237 (4,48), 242 (4,47) s, 260 (3,22) s, 268 (3,38) s, 275 (3,53), 277 (3,48) s, 284 (3,59).
- $\begin{array}{ll} \textbf{10} & 205 \; (4,79) \; \text{s}, \; 240 \; (4,06), \; 245 \; (4,04) \; \text{s}, \; 263 \; (3,45) \; \text{s}, \; 269 \; (3,48), \; 272,5 \; (3,50), \\ & 278 \; (3,59), \; 287 \; (3,19). \end{array}$
- **11** 212 (4,61) s, 242,5 (4,17), 269 (3,80), 272,5 (3,54), 279 (3,63), 287 (3,24).
- **12** 212 (4,52) s, 258 (4,17), 278 (3,75), 293 (3,34) s.
- **13** 206 (4,68), 211 (4,63) s, 249 (4,38), 287 (3,63), 310 (2,35) s.
- $\begin{array}{rl} \textbf{14} & & 205 \; (4,33), \, 215 \; (4,28) \; \text{s}, \, 261 \; (3,21) \; \text{s}, \, 264,5 \; (3,33), \, 269,5 \; (3,48), \, 273 \; (3,54), \\ & & 279 \; (3,64). \end{array}$
- **15** 206 (4,69), 212 (4,66) s, 247 (4,35), 277,5 (3,56) s, 287,5 (3,56), 305 (3,27) s.

CD-Spektren

Die Spirane 2—14 zeigen innerhalb ihres ${}^{1}L_{b}$ - Cotton effekts keine wesentliche Verschiebung der Maxima gegenüber ihren Elektronenanregungsspektren (siehe Abb. 1—4 und Tab. 1 und 2). Bei vielen Derivaten (z. B. 7, 8, 9, 14) sind auch die Schwingungsprogressionsbanden deckungsgleich*.

Hinsichtlich des ${}^{1}L_{a}$ -*CD-Cotton*effekts lassen sich zwei Spektrentypen I und II unterscheiden: Der Fall I (siehe Abb. 2 und 4) zeigt einen einzigen (gelegentlich feinstrukturierten) ${}^{1}L_{a}$ -Übergang, dessen Maximum bezüglich der Wellenlänge mit dem UV-Spektrum etwa übereinstimmt. In diese Klasse fallen die Spirane **6**, **7**, **8**, **10**, **11**, **12** und **14**, bei denen zumindest einer der beiden Liganden nur geringfügige elektronische Wechselwirkung mit dem daran geknüpften Indanteil besitzt.

Beim Kurventyp II (siehe Abb. 1 und 3) hingegen treten innerhalb des ${}^{1}L_{a}$ -Cottoneffekts zwei Banden verschiedenen Vorzeichens

^{*} Hierbei weisen die Derivate **2–6**, **9–13** und **15** (der im Schema gezeigten Konfiguration) einen positiven ${}^{1}L_{b}$. *Cotton*effekt auf. Bei den Alkylderivaten **7**. **8** und **14** ist das Vorzeichen der Bande bei gleicher Konfiguration negativ.

Tabelle 2. CD-Spektren der optisch aktiven 2,2'-Spirobiindane 2–15 in Ethanol. Die Vorzeichen beziehen sich auf die im Schema gezeigte Konfiguration [(2R) für 2–14; (2S) für 15]. λ [nm] ($\Delta \varepsilon$)

- **6** 215 (+0.65), 227.5 (+1.62), 240 (~ 0) , 260 (+0.07) s, 270.5 (+0.11), 276.5 (+0.12), 295 (0).

- **10** 208 (0), 213 (-4,23), 222 (0), 226 (+0,53) s, 230 (+1.48) s, 236 (+2,22), 242 (+2,06), 247 (+1,90), 267 (+0,17) s, 276 (+0.16), 278 (+0,12), 282 (+0,15), 284 (+0,14) s, 287.5 (+0,17), 290 (+0.11) s, 295 (0).
- 11 210(-1.92) s. 212.5(-4.65). 227(0). 238(+2.14). 245(+1.99), 265(+0.10) s. 275(+0.14), 281(+0.15), 287.5(+0.17), 300(0).
- **12** 204 (+ 8,51), 212 (0), 218 (-4,11), 231 (0), 254 (+ 1.72), 260 (+ 1,54) s, 274 (+ 0,32), 284 (+ 0,22), 330 (0).
- **13** 207 (0), 211 (-17,08), 214,5 (0), 218 (+5,35), 228 (-3.82) s. 240 (-10.96), 249 (0), 257 (+9,43), 277 (+2,00) s, 287 (+1,80), 315 (+0,03) s, 350 (0).

("Couplet") auf. Die Bandenaufspaltung beträgt 13—17 nm ($\Delta \nu = 2300$ —2800 cm⁻¹). Der Wendepunkt des *CD*-Couplets entspricht etwa dem Wert $\Delta \varepsilon = 0$ und liegt annähernd bei der Wellenlänge des UV-Maximums. Diesem Typ sind die Spirane **2**, **3**, **4**, **5**, **9**, **13** und **15** zuzuordnen, die zwei Liganden mit großen spektroskopischen Momenten besitzen. Der beobachtete Couplet-Typ ist offenbar konfigurationsspezifisch, da bei einheitlicher Konfiguration [(+)-(2*R*)*,

^{*} Zur konfigurativen Nomenklatur vgl. ¹. Das Vorzeichen bezieht sich auf die Molrotationen im Transparenzgebiet. Das im Schema gezeigte (+)-(2S)-**15** weist bezüglich der "großen" Reste Acetyl und Methoxycarbonyl die gleiche Helizität auf wie (+)-(2R)-**2**—**14** (vgl. dazu ¹).

Abb. 1. UV- und CD-Spektren von (+)-(2R)-2,2'-Spirobiindan-5,5'-dicarbaldehyd (5) in Ethanol

siehe Schema] die längerwellige Bande positives, die kürzerwellige negative Vorzeichen besitzt.

Das Auftreten eines Couplets innerhalb des ${}^{1}L_{a}$ -Cottoneffekts bei Spiranen, wo beide aromatischen Chromophore — bedingt durch die Natur der Liganden — verhältnismäßig große Dipolstärken besitzen, läßt auf eine elektronische Kopplung der beiden Indaneinheiten schließen und legt eine vereinfachte Modellrechnung zur Abschätzung der auf dieser Basis zu erwartenden Bandenaufspaltungen $\Delta \hat{v}$ und Rotationsstärken der Couplet-Teile mit A- und B-Symmetrie an Derivaten der Punktgruppe C_2 nahe. Dies kann mit Hilfe der Exciton-

⁶⁴ Monatshefte für Chemie, Vol. 109/4

Abb. 2. UV- und CD-Spektren von (+)-(2R)-5,5'-Dimethyl-2,2'-spirobiindan (7) in Ethanol

Theorie (gekoppeltes Oszillatormodell)^{5, 15, 16} geschehen, da die Chromophore in den Grundzuständen einander nicht überlappen, und keine π — π -Wechselwirkungen bestehen. Dies wurde aus der Gleichgewichtskonstante der Mono- und Bis-Chromtricarbonylkomplexe von 2,2'-Spirobiindan geschlossen²⁰.

Für die Bandenaufspaltung $\Delta \tilde{v}_{AB}$ gilt (vgl. ^{5, 16}):

$$\hat{v}_{\mathcal{A}} - \tilde{v}_{\mathcal{B}} = \frac{2\,\mu_1^2}{h\cdot c\cdot d^3} (\cos^2\gamma - \cos^2\beta + 2\cos^2\alpha) \tag{1}$$

Abb. 3. UV- und CD-Spektren von (+)-(2R)-2,2'-Spirobiindan-5,5'-dicarbonitril (9) in Ethanol

Dabei bedeuten α , β und γ die von den Partialmonomenten μ_1 und μ_2 mit den positiven Achsen x. y und z des (in den Abb. 5 und 6 veranschaulichten) Koordinatensystems eingeschlossenen Winkel. (Die z-Achse entspricht der C_2 -Achse der Molekel).

Da in diesem Fall (wegen $\gamma = \pi - \beta$) $\cos^2 \gamma = \cos^2 \beta$. vereinfacht sich (1) zu:

$$\tilde{\mathbf{v}}_A - \tilde{\mathbf{v}}_B = \frac{2\,\mu_1^2}{h\cdot c\cdot d^3} \cdot 2\cos^2\alpha \tag{2}$$

Wegen $\cos^2 \alpha \ge 0$ ist stets $\hat{\nu}_A \ge \hat{\nu}_B$: d. h. der Übergang mit μ_1 und μ_2 in Phase (A-Typ) ist in allen Fällen höherenergetisch ($\lambda_A < \lambda_B$) als der B-Typ (mit μ_1 und μ_2 in Gegenphase: vgl. dazu Abb. 6).

Die Rotationsstärken für A- und B-Übergang erhält man aus:

$$R_{ag}^{A} = -R_{ag}^{B} = \pi \,\hat{\mathbf{v}}_{0} \,\mu^{2} \,d\,\cos\gamma\cos\beta \tag{3}^{5,16}$$

Abb. 4. UV- und *CD*-Spektren von (+)-(2*R*)-5'-Ethyl-2,2'-spirobiindan-5carbonsäuremethylester (11) in Ethanol

Dabei bedeutet μ das resultierende Gesamtmoment des Überganges ($\vec{\mu_1} + \vec{\mu_2} = \vec{\mu}$). Der Abstand *d* der Partialmomente beträgt im vorliegenden Fall 5 bis 6 Å. μ_1 (= μ_2) bzw. μ erhält man aus den Dipolstärken ($D = \mu^2$) entsprechender Übergänge in den Elektronenanregungsspektren der Spirane **2**—**15**. Die Ermittlung der Lage der Übergangsmomente μ_1 bzw. μ_2 in den Indaneinheiten (zur Bestimmung der Winkel α , β und γ) erfolgte mit Hilfe der spektroskopischen Momente nach *Platt*²¹.

Wegen $\cos \gamma = -\cos \beta$ ergibt sich $R_{ag}^A \leq 0$ (vgl. Abb. 6).

Für das Dinitril **9** (vgl. Abb. 3) erhält man für das ${}^{1}L_{a}$ -Band nach Gl. (2) eine Bandenaufspaltung $\Delta \hat{\nu} \approx 1800 \text{ cm}^{-1}$, entsprechend $\Delta \lambda \approx 10 \text{ nm}$ ($\hat{\nu}_{0} \approx 42\,000 \text{ cm}^{-1}$). Die Rotationsstärken R^{A} bzw. R^{B} ergeben sich aus (3) zu $R^{A} = -R^{B} \approx -5.5 \cdot 10^{-39}$. Beide errechneten

Abb. 5. Lage eines 5.5'-disubstituierten 2.2'-Spirobi
indans der Konfiguration (2R) bezüglich des zur Ermittlung der Bandenaufspaltung gewählten cartesischen Koordinatensystems

Abb. 6. Projektion des Moleküls auf die $y/z\text{-}\mathrm{Ebene}$ des Koordinatensystems; Helizität der Übergangsmomente der ${}^1\mathrm{L}_a\text{-}\mathrm{Bande}$ und resultierender Couplet-Typus für die Konfiguration (2R)

Größen $(\Delta \tilde{\nu} \text{ und } R)$ sind in ausgezeichneter Übereinstimmung mit den experimentell gefundenen Werten für $9: \Delta \lambda = 13 \text{ nm}, \Delta \tilde{\nu} = 2287 \text{ cm}^{-1}, R^{-1} \approx -R^{-1}R^{-1} = -1.1 \cdot 10^{-39}$. Darüber hinaus entspricht der gefundene Couplet-Typ der im Schema gezeigten und bei ^{1,18} mit $[M]_D$ korrelierten absoluten Konfiguration (+)-(2R).

Für den ${}^{1}L_{a}$ -Cottoneffekt von **6**, **7**, **8**, **10**, **11**, **12** und **14** kommt hingegen auf Grund von $\Delta \hat{v} \approx 0$ (dies entspricht einer Kompensation von R^{A} und R^{B}) Dipol—Dipol-Kopplung für das Auftreten eines endlichen Circulardichroismus nicht in Betracht. Tatsächlich zeigt z. B. **7** (das dem Kurventyp I angehört: vgl. Abb. 2) im Bereich des ${}^{1}L_{a}$ -Überganges keine Bandenaufspaltung. Für den ${}^{1}L_{b}$ -Cottoneffekt ergibt die rechnerische Abschätzung auf Grund der geänderten Lage der Momente und der geringeren Dipolstärken unabhängig von der Natur der Liganden $\Delta \hat{v} \approx 0$. Hier ist also in keinem Fall eine Beteiligung einer Dipol-Kopplung am Zustandekommen des CD zu erwarten. Dies wird durch die experimentellen Befunde (vgl. Abb. 1—4 und Tab. 2) bestätigt.

Für das Auftreten des ${}^{1}L_{b}$ - Cottoneffekts von 2—15 sowie für den ${}^{1}L_{a}$ -Übergang der Derivate 6, 7, 8, 10, 11, 12 und 14 ist also offensichtlich eine teilweise Lockerung der Übergangsverbote durch chirale Störschwingungen — wie sie z. B. auch für zentrochirale Phenylmethane, Indane und Tetraline sowie für bestimmte [2.2]Meta-cyclophane postuliert wurde — maßgeblich (vgl. ², ⁶ und dort zitierte Literatur).

Die hier beschriebenen Ergebnisse bezüglich des CD 5,5'-disubstituierter 2.2'-Spirobiindane zeigen eine deutliche Ahnlichkeit mit den kürzlich diskutierten CD-Spektren optisch aktiver [2.2]Metacyclophane⁶. Auch dort ist eine Beteiligung des μ — μ -Mechanismus nur für den ¹L_a-Übergang solcher Derivate relevant, wo an beide Benzolringe Substituenten mit großen spektroskopischen Momenten geknüpft sind²².

Vorerst etwas überraschend sind die äußerst geringen Rotationsstärken des Enonchromophors (¹W-Band) im *CD* des Aldehyds **5** $(\Delta \varepsilon_{320} \approx 0.1)$ und der Ketone **4, 12** und **13** $(\Delta \varepsilon_{320} \approx 0.05)$. Diese Werte sind um mehr als eine Größenordnung kleiner als bei analog substituierten [2.2]Metacyclophanen^{6, 23}. Auch die Einführung eines Substituenten in *ortho*-Stellung zur Carbonylgruppe von **13** unter Bildung von **15** bleibt ohne Einfluß auf die Intensität des Überganges. Dieser Sachverhalt wird allerdings verständlich, wenn man berücksichtigt, daß bei den [2.2]Metacyclophanen — bedingt durch die *ortho*ständige Brücke und den zweiten Benzolring — die räumlichen Verhältnisse nicht nur *in* der Benzolringebene, sondern auch *ober*- und *unter*halb derselben verschieden sind²³. Damit ist hier ein einziges Rotameres bevorzugt, das durch den Schraubensinn seines Enonchromophors Größe und Vorzeichen des ¹W-Cottoneffekts bestimmt^{23, 24}. Für alle Spirobiindane sind jedoch die Rotameren **a** und **b** bzw. **c** und **d** (siehe Abb. 7) aus Symmetriegründen praktisch äquienergetisch*.

Da die Enon-Gruppierungen von a und b (gleiches gilt für c und d) entgegengesetzte Helizität besitzen, geben sie zu *Cotton*effekten verschiedenen Vorzeichens Anlaß.

Abb. 7. Mögliche Konformationen eines Carbonylrestes ($X \rightarrow C = O$) in Stellung 5 (bzw. 5') von 2,2'-Spirobiindanen

Bei 5.5'-disubstituierten Carbonylverbindungen sind sicherlich alle Rotameren **a**---d am Konformationsgleichgewicht in Lösung beteiligt. Da für **a** und **b** (bzw. **c** und **d**) gleiche Besetzungszahlen zu fordern sind. ist unabhängig von der relativen Population von $(\mathbf{a} + \mathbf{b})$ gegenüber $(\mathbf{c} + \mathbf{d})$ eine interne Kompensation der *Cotton*effekte mit positivem und negativem Vorzeichen zu erwarten. Beim trisubstituierten Spirobiindan 15 scheiden aus sterischen Gründen die Konformeren **a** und **b** aus. Die Rotameren **c** und **d** mit entgegengesetzter Chiralität sollten jedoch weiterhin äquipopuliert sein. so daß auch bei 15 die geringe Rotationsstärke des ¹W-Überganges verständlich erscheint**.

^{*} Der Einfluß des etwa 13 Å entfernten Zweitsubstituenten (Position 5') ist zu vernachlässigen.

^{**} Auf Grund der außerordentlich kleinen Rotationsstärken des ¹W-Cottoneffekts bei allen vermessenen Carbonylderivaten ist der Beitrag dieses Übergangs zur molaren Drehung im Transparenzgebiet unmaßgeblich. Für die Nichtanwendbarkeit eines Näherungsansatzes für Chiralitätsfunktionen beim trisubstituierten Derivat **15** ist eine konformative Beeinflussung dieses Chromophors durch die 5'-Ethylgruppe daher nicht ausschlaggebend (vgl. dazu ¹).

Dank

Dem "Fonds zur Förderung der wissenschaftlichen Forschung in Österreich" danken wir für den Ankauf eines Dichrographen (Projekt 3033), der "Hochschuljubiläumsstiftung der Stadt Wien" für finanzielle Unterstützung. Das UV-Spektrometer wurde von der Stiftung "Volkswagenwerk" zur Verfügung gestellt.

Experimenteller Teil

Zur Darstellung der optisch aktiven Spirane **2—15** vgl. ¹ (bzw. ¹⁸). Alle vermessenen Verbindungen waren optisch rein¹.

Die CD-Spektren wurden mit dem Gerät Mark III (Jobin-Yvon) in Ethanol (Uvasol, Merck) ermittelt. Dabei wurden Zylinderquarzküvetten variabler Schichtdicke (0,01—2,00 cm) verwendet. Den Nullinienkorrekturen haben wir durch Messung des Kurvenverlaufs des Lösungsmittels Rechnung getragen.

Die UV-Spektren wurden mit einem Cary-15 Spektrometer in Icm-Quarzküvetten aufgezeichnet.

Alle Messungen erfolgten bei 20 ± 0.1 °C (Thermostatierung). Die Meßkonzentrationen lagen zwischen 10^{-3} und 10^{-5} Mol/1.

Literatur

- ¹ 6. Mitt.: H. Neudeck und K. Schlögl, Chem. Ber. 110, 2624 (1977).
- ² H. Keller und H. Lehner. Mh. Chem. 106, 1117 (1975).
- ³ F. Ciardelli und P. Salvadori, Hrsg., Fundamental Aspects and Recent Developments in Optical Rotatory Dispersion and Circular Dichroism. London: Heyden. 1973.
- ⁴ E. Langer. H. Lehner und K. Schlögl, Tetrahedron 29, 2473 (1973).
- ⁵ G. Haas, P. B. Hulbert, W. Klyne, V. Prelog und G. Snatzke. Helv. Chim. Acta 54, 491 (1971).
- ⁶ H. Keller, Ch. Krieger, E. Langer, H. Lehner und G. Derflinger. Tetrahedron **34**, 871 (1978).
- 7 R. K. Hill und D. A. Cullison, J. Amer. Chem. Soc. 95, 1229 (1973).
- ⁸ H. Falk, W. Fröstl, O. Hofer und K. Schlögl, Mh. Chem. 105, 598 (1974).
- O. E. Weigang, jr. und M. J. Nugent, J. Amer. Chem. Soc. 91, 4555 (1969); M. J. Nugent und O. E. Weigang, jr., ibid. 91, 4556 (1969).
 S. Hagishita, K. Kuriyama, M. Hayashi, Y. Nakano, K. Shingu und M.
- ¹⁰ S. Hagishita, K. Kuriyama, M. Hayashi, Y. Nakano, K. Shingu und M. Nakagawa, Bull. Chem. Soc. Japan 44, 496 (1971); S. Hagishita, K. Kuriyama, K. Shingu und M. Nakagawa, ibid. 44, 2177 (1971).
- ¹¹ S. Hagishita und K. Kuriyama, Tetrahedron 28, 1435 (1972).
- ¹² J. H. Brewster und R. T. Prudence, J. Amer. Chem. Soc. 95, 1217 (1973).
- ¹³ R. C. Cookson und S. McKenzie, Proc. Roy. Chem. Soc. 1961, 423.
- ¹⁴ H. Eyring, H.-Ch. Liu und D. Caldwell, Chem. Rev. 68, 525 (1968).
- ¹⁵ J. A. Schellman, Acc. Chem. Res. 1, 144 (1968).
- ¹⁶ S. F. Mason, in: Some Newer Physical Methods in Structural Chemistry. (R. Bonnett und J. G. Davis, Hrsg.), London: United Trade Press. 1967.
- ³⁷ S. F. Mason, J. Chem. Soc., Chem. Commun. 1973, 239,
- ¹⁸ A. Meyer, H. Neudeck und K. Schlögl, Chem. Ber. 110, 1403 (1977).

- ¹⁹ A. L. Goodman und R. H. Eastman, J. Amer. Chem. Soc. 86, 908 (1964).
- ²⁰ E. Langer und H. Lehner, Tetrahedron 29, 375 (1973).
- ²¹ J. R. Platt, J. Chem. Phys. 17, 484 (1949); idem. ibid. 19, 263 (1951); J. Petruska, ibid. 34, 1120 (1961).
- 22 E. Langer und H. Lehner, Publikation in Vorbereitung.
- ²³ Ch. Krieger, H. Lehner und K. Schlögl, Mh. Chem. 107, 195 (1976).
- ²⁴ P. Crabbé, in: An Introduction to the Chiroptical Methods in Chemistry. Mexico: Syntex, 1971.